

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Changelog
All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/)

[0.2.0] - 2022-02-15
Refactoring code structure

Added
- code check pipelines
- this changelog

Changed
- sub-module transform has been named empex
- thickness classes from init have been moved to empex
- the sub-modules _data and _sensor have been merged to _core

Bugfixes
- a circular import in the transform module has been resolved

Deprecated
- the sub-module empex is deprecated and will be replaced by iqspace once it is developed

 # Overview

sitem1d is a python package for S**ea-**I**ce **T**hickness estimation using frequency-domain **E**lectro**M**agnetic induction with a **1D approximation of layered earth. The package seeks to unify sea ice thickness retrieval among different sensors types by an abstract implementation of data classes and sensor calibration/retrieval algorithms, which can be used for the implementation of sea ice thickness retrievals for specific sensors.

[[_TOC_]]

One example using sitem1d is the [GEM-2 sea ice toolbox](https://gitlab.awi.de/sitem/gem2-seaice-toolbox).

Installation

The installation is meant via the python package index installer pip:

`bash
pip install git+https://git@gitlab.awi.de/sitem/sitem1d.git
`

Data Classes

The package provides several classes for storing frequency-domain EM sensor data.

Channel Data

The sitem1d.ChannelData class provides the basic representation of complex relative magnetic field data of one EM channel. More on the definition of a channel below. ChannelData contains only an array of complex values, but provides an interface to the typical inphase/quadrature and amplitude/phase representations of EM data.

Input

The class is initialized by arrays or scalars of inphase and quadrature values. These must be of type float and any arrays must have only one dimension.

```python
>>> sitem1d.ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
sitem1d.ChannelData object:


[1.+1.j 2.+2.j 3.+3.j] (3 records)




```

The instance can also be initialized from a complex object and the following statement will result in an identical instance:

```python
>>> sitem1d.ChannelData.from_complex([1.0+1.0j, 2.0+2.0j, 3.0+3.0j])
sitem1d.ChannelData object:


[1.+1.j 2.+2.j 3.+3.j] (3 records)




```

An optional unit and label can be added to the instance:

```python
>>> ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0], unit=”ppm”, label=”Label”)
sitem1d.ChannelData object:


[1.+1.j 2.+2.j 3.+3.j] (3 records)
label: Label
unit: ppm




```
While scalar input is allowed, the value will be converted to an array.

`python
>>> hshp = ChannelData(1.0, 1.0)
>>> hshp.iq
array([1.+1.j])
`

Properties

The instance contains the properties for the all representations of the complex values of one EM channel (e.g. one frequency + transmitter/receiver configuration). The data is traditionally represented by the inphase (real) and quadrature (imaginary) compents of the

`python
>>> hshp = ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0], unit="ppm", label="Label")
>>> hshp.iq
array([1.+1.j, 2.+2.j, 3.+3.j])
>>> hshp.z
array([1.+1.j, 2.+2.j, 3.+3.j])
>>> hshp.inphase
array([1., 2., 3.])
>>> hshp.quadrature
array([1., 2., 3.])
>>> hshp.amplitude
array([1.41421356, 2.82842712, 4.24264069])
>>> hshp.phase
array([45., 45., 45.])
>>> hshp.phase_radian
array([0.78539816, 0.78539816, 0.78539816])
>>> hshp.n_records
3
>>> hshp.unit
'ppm'
>>> hshp.label
'Label'
`
> Note that the properity z is an alias of iq and kept for historical reasons.

The data content in ChannelData is protected against modification by any means other than the intented operators.

	Properties are immutable


```python
>>> hshp = ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
>>> hshp.inphase = 0.0
Traceback (most recent call last):



	File “C:pythonanaconda3envspy3p8libcode.py”, line 90, in runcode
	exec(code, self.locals)





File “<input>”, line 1, in <module>




AttributeError: can’t set attribute
```


	Properties return copies of the variables and not references

`python
>>> hshp = ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
>>> inphase = hshp.inphase
>>> inphase[0] = 1000
>>> hshp.inphase
array([1., 2., 3.])
`

Operators

The ChannelData object allows operators:

	Slicing [Iterable]: Selecting a subset of the data container.


```python
>>> hshp = ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
>>> hshp[1:]
sitem1d.ChannelData object:


[2.+2.j 3.+3.j] (2 records)




```


	Addition +: Complex addition of two data sets


```python
>>> a = ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
>>> b = ChannelData([1.0, 1.0, 1.0], [1.0, 1.0, 1.0])
>>> a + b
sitem1d.ChannelData object:


[2.+2.j 3.+3.j 4.+4.j] (3 records)




```


	Subtraction -: Complex subtraction of two data sets


```python
>>> a = ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
>>> b = ChannelData([1.0, 1.0, 1.0], [1.0, 1.0, 1.0])
>>> a - b
sitem1d.ChannelData object:


[0.+0.j 1.+1.j 2.+2.j] (3 records)




```


	Calibration Operator *

The * operator is reserved for modification of the content by appropriate other classes. . It can be used between ChannelData and any class that has a calibrate_channel_data method, which returns a calibrated ChannelData object. One example of such a functionality is given by


```python
>>> from sitem1d.cal import GainPhaseOffsetCal
>>> hshp = ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
>>> cal = GainPhaseOffsetCal(gain=2)
>>> hshp * cal
sitem1d.ChannelData object:


[2.+2.j 4.+4.j 6.+6.j] (3 records)




```


Methods

ChannelData only contains three methods.

	clone(): Return a full copy of the ChannelData instance.


```python
>>> hshp = ChannelData([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
>>> hshp.clone()
sitem1d.ChannelData object:


[1.+1.j 2.+2.j 3.+3.j] (3 records)




```

> Note: hshp.clone() is equivalent to hshp[:]

	ChannelData.iq2ap(inphase, quadrature): Class method to convert inphase/quadrature to amplitude/phase notation.

`python
>>> amplitude, phase = ChannelData.iq2ap([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
>>> amplitude, phase
(array([1.41421356, 2.82842712, 4.24264069]), array([45., 45., 45.]))
`

The method return phase as degree by default, but this can be changed:

`python
>>> ChannelData.iq2ap([1.0, 2.0, 3.0], [1.0, 2.0, 3.0], degree=False)
(array([1.41421356, 2.82842712, 4.24264069]), array([0.78539816, 0.78539816, 0.78539816]))
`

	ChannelData.iq2ap(amplitude, phase): Inverse transformation from amplitude/phase to inphase/quadrature. The methods assumes that phase in given in degree, which can be changed by passing degree=False keyword.

`python
>>> ChannelData.ap2iq(amplitude, phase)
(array([1., 2., 3.]), array([1., 2., 3.]))
`

Channel Definition

The class sitem1d.ChannelDefinition is a light data class that contains metadata of a given channel. The metadata contains the following properties:

	transmitter frequency in Hz

	separation (spacing) between the transmitter (tx) and receiver (rx) coils in meter

	a string describing the transmitter/receiver coil configuration. Currently supported are hcp (horizontal coplanar) and vpc vertical coplanar.

	[Optional] separation (spacing) between the transmittter (tx) and bucking (bx) coils in meter.


```python
>>> from sitem1d import ChannelDefinition
>>> ChannelDefinition(18325., 1.660, “hcp”)
Channel Definition (f18325r1p66hcp):


Transmitter frequency: 18325.0 Hz
Rx-Tx coil separation: 1.66 m
Rx-Tx coil mode      : hcp (flag: 0)
Bx-Tx coil separation: N/A




```

respectively with bucking coil:

```python
>>> ChannelDefinition(18325., 1.660, “hcp”, 1.035)
Channel Definition (f18325r1p66hcpbx):


Transmitter frequency: 18325.0 Hz
Rx-Tx coil separation: 1.66 m
Rx-Tx coil mode      : hcp (flag: 0)
Bx-Tx coil separation: 1.035 m




```

The class creates a unique id based on the properties (in this case f18325r1p66hcp/f18325r1p66hcpbx without/with the bucking coil definition).

EM Channel

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

